Arvados - Bug #10813

Improve performance of arv-put
01/04/2017 08:20 PM - Tom Morris

Status: Resolved Start date: 01/04/2017
Priority: Normal Due date:

Assigned To: Lucas Di Pentima % Done: 100%
Category: Estimated time: 0.00 hour
Target version: 2017-02-01 sprint

Description

Uploading BCL files using arv-put only achieves 5-10 MB/s while using 35% CPU. This is to slow on transfer and too high on CPU
usage. It also appears that performance consistently drifts down over the course of an upload, indicating, perhaps, an issue with
processing large manifests.

Here's a little ASCII art graphic from bmon:

MiB (RX Bytes/hour) MiB
(TX Bytes/hour)
A8 .40 e e e e e e e e e T 8.04
........................ T
L2 G 1 T OO 6.70
............ 0000000000000 0cccocooccccccno00a0c00000000
G 0 T S 5.36
O PO [
2 O 0 4.02
I 1 e 1 1 SRS e [T P
1 Il cocooccoooooooccooo00o0o0 2.68 |
T T I) PO T T S
LI A B I T T B 1.34 |
gonoooonaonnooonnnoonnnnnnoniiessesssllllllcoceacocacccana
1 5 10 15 20 25 30 35 40 45 50 55 60 1 5

10 15 20 25 30 35 40 45 50 55 60

The 50 MB/s download in hours 39-36 is from Azure blob storage to a local shell node using the blobxfer utility. The arv-put
bandwidth starts at ~8 MB/s in hour 33 and drifts down to ~5 MB/s in hour 6, averaging 6 MB/s for the entire 30 hours.

The performance goal is at least a 4x improvement to 25 MB/s, but achieving parity with blobxfer (~50 MB/s) would be even better.

Here's a detailed bandwidth graph of what a blobxfer transfer looks like:

MiB (RX Bytes/second) KiB
(TX Bytes/second)
97.84 Jooooocooo0000000000000000000 [Jooocoocoooooo0000 Jooooooo 13863 coooc
.................... | e e e e e e e e e e e
S X e e O I P (e I I I I e 111.36
.................... I
85.28 coll|loclllccclllcoclllcealllccallloclllcccllccclllllocalllllloosll 89.09 ...
ol lloocllloocolllocallllcocolloccollllococclocoolloccallllccncl
48.92 ... 1] (I R I I O I 0 S Ry I Y P Y B I I R 66.82 .. |||
250 1 sl e e Gl e el el sl s
- e L s e s e I e I IS PO Y P O 44.54 .. |||
sl llcocllloolllloalllcoallloclllcocllloallllcallloalll
I A e N N N R R A N N R N R N A 22,27 88l
R N e N N NN N N AN A
1 5 10 15 20 25 30 35 40 45 50 55 60 1 5
10 15 20 25 30 35 40 45 50 55 60
Here's the corresponding arv-put graph
KiB (RX Bytes/second) MiB
(TX Bytes/second)
D2 O Cee 25.25 ...,

10/20/2021 1/6

101784 ccoococooocooococoocoooooo00a] cooooooooco0occoco00000000000c Jloooo 2L.05 coole

Bl8o87 cocococoocococooc lcccocoooooaoa lolloccooooaoonaoa loloccooooaconac loooa 16,84 o0

......... \ [[.| I I O |
610.41 . | | [. [Tl |, IS T | | 12.63 []
[v, [T I0looolllococollllocoollllloccoooc I
406.94 ol el bl I b eee el eeead I b eeaadadeeaal Il eenn.. [ool 8.42 [1]
[T e e I Py I O Y I I B
203.47 s f L LEI et bess b bes bbb bea bbb beees bbb el bl bl I 4.21 ||}
AN A N A A N N N N NN
1 5 10 15 20 25 30 35 40 45 50 55 60 1 5
10 15 20 25 30 35 40 45 50 55 60

All of the lllumina sequencer outputs are pretty similar: ~600 GB in ~242,000 files, the bulk of which are ~238,000 gzipped BCL files
that range in size from 2 MB to 4 MB with the following size distribution:

202477 3 MB
33461 4 MB
2141 2 MB

1 1 MB

The files are grouped in directories of about 300 MB each, like this:

79058 Data/Intensities/BaseCalls/L005
310 Data/Intensities/BaseCalls/L005/C309.1
310 Data/Intensities/BaseCalls/L005/C308.1

The blobxfer utility uses 6 worker threads by default and it looks from the gaps in the bandwidth graph like that's not sufficient to
cover all the latency with these small files sizes, but arv-put is doing much worse.

Subtasks:
Task # 11008: Review 10813-arv-put-six-threads Resolved
Task # 10818: Review 10813-arv-put-six-threads Resolved

Associated revisions

Revision c8aa6553 - 01/18/2017 09:32 PM - Lucas Di Pentima

Merge branch '10813-arv-put-six-threads'
Refs #10813

Revision 7a53cfc9 - 01/31/2017 03:13 PM - Lucas Di Pentima
Merge branch '10813-arv-put-six-threads'

Closes #10813

History

#1 - 01/04/2017 08:24 PM - Tom Morris

- Assigned To set to Lucas Di Pentima

#2 - 01/04/2017 08:38 PM - Tom Morris
- Story points set to 1.0

#3 - 01/04/2017 09:13 PM - Tom Morris

- Description updated

#4 - 01/04/2017 10:16 PM - Lucas Di Pentima

Tom, can you please describe also the dataset being uploaded? File count, and size distribution would help. Thanks!

#5 - 01/05/2017 04:06 AM - Tom Morris

- Description updated

#6 - 01/06/2017 06:54 PM - Lucas Di Pentima

- Status changed from New to In Progress

10/20/2021 2/6

#7 - 01/09/2017 10:48 PM - Tom Morris

The other use case is upload of output collections from Crunch jobs to Keep. Although I'm sure the small files of BCLs don't help things, the problem
exists with large files too. An output collection of 125 GB spread over just 16 files uploads at an average of less than 10 MB/s.

#8 - 01/13/2017 07:54 PM - Lucas Di Pentima
- File arv-put perf.ods added

Did some back box testing using arvagrant to test the performance with different network speeds. I've attached an OOo spreadsheet with the results
and test setup. In short, arv-put performed between 80% and 100% of the control case (scp command), and on a special case it outperformed scp
because the CPU started to be the bottleneck.

On arvagrant, when the network speed went to 1Gbps, arv-put occupied 60% of the bandwidth when uploading 2MB files, so | tried adding more
upload threads but didn't got any significant enhancement. Nevertheless, the arvagrant test speeds have been a lot greater than what it was seen on
production.

The next step was to try on an Azure installation, | tried c97gk with different thread numbers. It seems that the latency when using Azure blob storage
is the problem, we can see spikes up to 60MB/s so there's enough bandwidth to reach high transfer rates but using the default 2 threads averages at
a 40% of the capacity.

When adding threads, the network usage graphs get ever less spiked until we reach 6 threads, over that value there's no significant improvement.

Thread tests (Queue size = 1/ 1GB upload - 512 files 2MB each)

1 Thread: 73 secs ~14 MB/s

MiB (TX Bytes/second)
(oY

B o
41.
31.
20.
10.

91

38

58 oo
15 ..
76 oo

1 5 10 15

(0L TS T T e I R
20 25 30

|
coool
[R I R I I I |
Isglssllssllllscllssslls 8
35 40 45 50 55 60

2 Threads: 41 secs ~25 MB/s

MiB (TX Bytes/second)
61.88 e e e e e S
8L o837 cocoooo Jloooll
41.25 ..., Ilocolllooc
30.94 [o I
20068 coocooo |11 |
10,31 888888088/

61 o30 cooccocococooo locoooa |
B5L.09 ccoocoooooo Jolloool
A0o87 coococococoooc 100cool
3065 cocoo [lcolllllcocl
I
I

T I [[et e e e e e
PR R I P
S T T S O
R T T
20.43 T o
10.22 s bl es bbb bes bbb bbbl TT]

1 5 10 15 20 25 30 35 40 45 50 85 60

MiB (TX Bytes/second)
G286 ccoococooo [leeealloeeans
52.13 [R A I J000coollclooocoococoooococoooocoocoooooo
41.70 ... S e
L oB8 coocoooo JOO000c000000cclllllcclllllcccoccoccoococ000000000000000
20.85 0 T
LO-4A3 sggsssslU0000000000sg00U0N0N0N000888888888888888888888888888

1 5 10 15 20 25 30 35 40 45 50 55 60

5 Threads: 28 secs ~36 MB/s

MiB (TX Bytes/second)

10/20/2021 3/6

A967L coocoocooo [Tt
396077 cococooooo [Tt
29088 ccoooooo FEETTEr- 1l
19689 co000¢ FEEEEEEEra il
9.94 crxzza [LIIIIILITTIT]
1 5 10 15 20 25 30 35 40 45 50 55 60

6 Threads: 26 secs ~39 MB/s

MiB (TX Bytes/second)
59.74 [llocoo
49.78 ... J00oo
8988 cooococooo [l
29.87 ... [T
19.91 |11

7 Threads: 26 secs ~39 MB/s

MiB (TX Bytes/second)
60.56 I 1l....
50.46 [
40.37 ... [NREEN
30.28 (RN
D2 T 1 T T
10.09 ceae LTI beseeseesesssrsrssrssrssrzszees

1 5 10 15 20 25 30 35 40 45 50 55 60

8 Threads: 26 secs ~39 MB/s

MiB (TX Bytes/second)

6203 cccooo [N
5L.6Y cocoooo J00c0000000cllclloocococcccoooococcooocooccooocoocooooo0o0a
41.35 T
L@l coooo DO000000000000000000lccoccoccococococoococooo0coocooo0cooa
2068 cocooo T e
LO34 sss 0000000000000 0000000008888888888888888888888888888888888
1 5 10 15 20 25 30 35 40 45 50 55 60

#9 - 01/17/2017 05:07 PM - Tom Morris

Here's the results of a test run on an Azure production cluster. The starting bandwidth of ~32 MB/s is good, but it tails off to less then a quarter of that
over the course of the upload.

MiB (TX Bytes/hour)
31.93 i [e e e e e e e e e et e
26.61 ... PP
21.29 ..., Ll] e e e e e e e e e e e e e e e e e
15.97 oo, 0
O S I O O I T T O

1 5 10 15 20 25 30 35 40 45 50 55 60

I'm running a test with 8 threads now on the same 2 core shell node. We'll need to choose whether we go with a fixed default (4? 6? 8?) or scale it to
the number of cores like blobxfer does (e.g. 2 * num_cpus)

#10 - 01/18/2017 06:28 AM - Tom Morris

| don't have final results, but 8 threads appears to be a little slower, if any anything, but not much different.
There is however a very distinctive and regular pattern to the CPU usage. After a couple of hours, it looks like:

| 8-9 seconds @ 50%
11 2-3 seconds @5-10%
Il 11-12 seconds @100%

At the beginning of the arv-put job, Phase | was longer (~16-17 sec) and Phase Il shorter (~2 sec).

My interpretation of this is that:

- Phase | is the data transfer phase

- Phase Il represents a draining/sync period when less and less work is done until all threads are completely quiescent

- Phase Il is the manifest save

- the 20 second manifest save cycle mentioned by Lucas is measured from beginning of save to beginning of save, so the longer and longer manifest

10/20/2021 4/6

saves end up stealing more and more of the transfer time
- something(s) is/are braindead in the manifest save code causing it to take 10s of seconds to write kilobytes of data

Suggestions:

- make manifest save period minutes (37 57), not seconds. If the 12 hour job I'm running dies, | don't really care if | miss 10 seconds (or even 100s).
- fix the manifest code! it's slowing down everything in the system (but I'm happy to have that pushed to a separate ticket and declare this one done
with the changes in default threads and manifest save period)

#11 - 01/18/2017 02:43 PM - Lucas Di Pentima
Thanks Tom for your suggestions.
Your were right about Phase II: when the update thread asked for the manifest with only committed blocks for state saving, there was a bug that only

happened when uploading file collections with subdirectories inside, that turned off the "only_committed_blocks" feature and called for a complete
block flush of all the put threads, so the entire upload process stopped for some seconds.

I've fixed that bug and now the manifest acquiring process is done in parallel with the upload threads as it should be from the beggining.
| added --threads N argument to arv-put command, so that it can be used to override the default number of put threads (that's 2 at the moment).

Updates on branch 10813-arv-put-six-threads at b0e6c00
Test running at: https://ci.curoverse.com/job/developer-run-tests/138/

#12 - 01/18/2017 03:46 PM - Peter Amstutz
put.py:142 "troughput" -> "throughput"

| suggest adding the only_committed flag to Collection.manifest_text() (if True, skip commit_all()) so that put.py isn't required to call the internal
method _get_manifest_text().

#13 - 01/18/2017 04:33 PM - Lucas Di Pentima

Updates pushed at 221c7d2
Tests running on: https://ci.curoverse.com/job/developer-run-tests/139/

#14 - 01/18/2017 06:59 PM - Lucas Di Pentima
- Target version changed from 2017-01-18 sprint to 2017-02-01 sprint

#15 - 01/18/2017 08:15 PM - Lucas Di Pentima

Merged master into branch: c01ce0788adade520dc825152685aee0449a7dad
Running tests at: https:/ci.curoverse.com/job/developer-run-tests/140/

#16 - 01/18/2017 09:18 PM - Peter Amstutz

put.py line 523, the "." argument is unnecessary:

manifest = self._local_collection.manifest_text (strip=False,
normalize=False,
only_committed=True)

arvfile.py line 1073: For consistency, this should accept the only_committed optional parameter (also needs to be fixed to use is_bufferblock() instead
of testing the locator name directly):

def manifest_text (self, stream_name=".", portable_locators=False, normalize=False):

#17 - 01/30/2017 09:32 PM - Lucas Di Pentima

Updates: €502060
Tests: https://ci.curoverse.com/job/developer-run-tests/150/

Addressed both comments and merged master into the branch.
#18 - 01/31/2017 03:07 PM - Peter Amstutz
Lucas Di Pentima wrote:

Updates: 502060
Tests: https:/ci.curoverse.com/job/developer-run-tests/150/

Addressed both comments and merged master into the branch.

LGTM

10/20/2021 5/6

https://dev.arvados.org/projects/arvados/repository/revisions/b0e6c00576257cef24cfd0599073f58904a2b85c
https://ci.curoverse.com/job/developer-run-tests/138/
https://dev.arvados.org/projects/arvados/repository/revisions/221c7d2f37a7a83a424597b11e13b638d6e1c21a
https://ci.curoverse.com/job/developer-run-tests/139/
https://dev.arvados.org/projects/arvados/repository/revisions/c01ce0788adade520dc825152685aee0449a7da4
https://ci.curoverse.com/job/developer-run-tests/140/
https://dev.arvados.org/projects/arvados/repository/revisions/e502060ffe4f68d33e2cca8f8d7544ce40d53eb7
https://ci.curoverse.com/job/developer-run-tests/150/
https://dev.arvados.org/projects/arvados/repository/revisions/e502060ffe4f68d33e2cca8f8d7544ce40d53eb7
https://ci.curoverse.com/job/developer-run-tests/150/

#19 - 01/31/2017 03:15 PM - Lucas Di Pentima
- Status changed from In Progress to Resolved

- % Done changed from 50 to 100

Applied in changeset arvados|commit:7a53cfc92d4bca452a687db0a6f338e6deb1564a.

#20 - 01/31/2017 10:03 PM - Tom Morris
Just to record some of the final performance figures, | did three 600+ GB uploads with the following results:
- 2 threads (default) - 19.2 GB/s

- 6 threads - 44.7 GB/s
- 6 threads - 44.9 GB/s

This compares to the starting performance of 5-6 GB/s, representing a ~7x improvement and shaving over a day (~26 hrs) off the upload times. The

goals were "at least a 4x improvement to 25 MB/s, but achieving parity with blobxfer (~50 MB/s) would be even better," so I'd say we achieved the
stretch goal.

Files

arv-put perf.ods 33.2KB 01/13/2017 Lucas Di Pentima

10/20/2021 6/6

http://www.tcpdf.org

